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The Classical Capacity of Single-Mode Free-Space Optical
Communication: A Review

Baris I. Erkmen∗, Bruce E. Moision∗, and Kevin M. Birnbaum∗

We give a brief summary of the classical information capacity of single-mode free-space optical communication,

both for pure-loss channels (i.e., with no background radiation), and for thermal-noise channels (i.e., with

background radiation). We compare the capacities afforded by structured transmitters and receivers to that of

the ultimate communication capacity. The ultimate capacity-achieving optical states are classical coherent

states (i.e., ideal laser light), but the capacity-achieving receiver is yet to be determined. In addition, in

photon-starved pure-loss channels, binary phase modulation in combination with the optimal receiver is

near-capacity achieving, and more importantly, it is superior to on-off keying. In a pure-loss channel,

heterodyne detection is near-optimal at high signal levels. In thermal-noise channels with high background noise

and low signal we find that homodyne and heterodyne detection both approach the ultimate capacity, and at

high signal heterodyne detection remains near-optimal. Finally, we quantify the degradation in channel capacity

that is due to multiple noise modes contributing to the output of photon-counters.

Electromagnetic waves are fundamentally quantized, and they are governed by the laws of quantum mechanics
[1, 2]. This quantized nature has long been observed at optical frequencies through high-sensitivity
photodetection systems. Therefore, when optical fields are the physical information carrier in a communication
link, the ultimate rate of reliable communication is dictated by noise sources of quantum mechanical origin. A
fundamental premise of quantum mechanics, which distinguishes it from classical mechanics, is that the
outcome of a measurement on an electromagnetic field is probabilistic, and the statistics of the outcome are
determined both by the measurement performed, and the state of the electromagnetic field at the time of the
measurement [3]. As a consequence, the rate of reliable communication is impacted by both the alphabet of
optical states used to convey information, and the measurement at the receiver to extract this information from
the information carrier.

In this article we address the capacity of a point-to-point communication channel utilizing optical fields as the
physical information carrier. The mathematical framework that facilitates the analysis is (classical and
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quantum) information theory and random coding theorems: namely Shannon’s channel capacity theorem [4],
and its quantum mechanical analog, the Holevo-Schumacher-Westmoreland (HSW) theorem [3]. A
comprehensive survey of channel capacity results, with various technology-driven modulations, and using both
classical and quantum receivers, has been reported in the recent literature [5, 6, 7, 8]. Our aim here is to
complement this body of work by providing a summary of more recent results for single-mode free-space optical
communication. We omit the derivations for brevity, and attempt to emphasize various avenues of future
research that will enable communication at the ultimate rates dictated by quantum mechanics.

This article is organized as follows. We begin with a brief review of the fundamentals in Section I. In particular,
we review the classical and quantum channel capacity theorems based on random coding, and the normal-mode
decomposition of the free-space propagation channel, which justifies the concept of single-mode operation. We
have organized the material such that during the first reading this section may be skipped with no loss in
continuity. We review in Section II the capacity of the pure-loss propagation channel, and in Section III the
capacity of a channel with background noise coupled in from the environment. In Section IV, we derive the
asymptotic expressions for the ultimate channel capacity with and without background noise. The degradation
due to multiple noise modes contributing to photon counting is considered in Section V. Finally, in Section VI
we present conclusions derived from our summary, emphasizing potentially fruitful avenues for research and
development to approach the ultimate channel capacity of free-space optical communication.

I. Preliminaries

Before we delve into a survey of various single-mode channel capacities, let us briefly review the foundation of
these results. In Section I.A we first review Shannon’s random channel coding theorem, and contrast this to its
quantum counterpart, the HSW random coding theorem. Then, in Section I.B, we review free-space
propagation for quasimonochromatic and paraxial optical beams and rigorously define a single-mode
communication architecture.

We reiterate here that this section may be skipped in first reading, with no loss in continuity. It can be utilized
as a reference section, and consulted as needed.

A. Random Coding Theorems: Classical and Quantum

In classical information theory, a discrete memoryless channel ε is described by a conditional probability map

ε ≡ {p(y|x) : x ∈ X , y ∈ Y} (1)

where x is a symbol from the alphabet of input symbols X , y ∈ Y is a symbol from the alphabet of output
symbols Y, and p(y|x) is the probability that the output is y, given that x is the input. Shannon’s well-known
channel coding theorem [9] states that the maximum rate of reliable communication over a channel, i.e., the
channel capacity C, is given by

C = sup
n∈N+

Cn/n (2)
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where
Cn = max

p(x):x∈X⊗n
I
(
p(x), ε⊗n

)
(3)

is the n-use channel capacity.1 In this expression, the maximization is carried out over all probability
distribution functions defined on the alphabet space X⊗n. The mutual information, I

(
p(x), ε⊗n

)
, is between the

n-tuples of random variables X = [X1 . . . Xn] and Y = [Y1 . . . Yn], which can be expressed as follows for a
discrete memoryless channel:

I
(
p(x), ε⊗n

) ≡ H

( ∑
x∈X⊗n

p(x)
n∏

k=1

p(yk|xk)

)
−

∑
x∈X⊗n

p(x)H

(
n∏

k=1

p(yk|xk)

)
(4)

where
H
(
p(x)

)
= −

∑
x∈X⊗n

p(x) ln
(
p(x)

)
(5)

is the Shannon entropy of the probability distribution p(x). In general, the maximization in Equation (3) would
have to be carried out with respect to the joint probability density function for n input symbols, i.e., p(x).
However, because the mutual information for memoryless channels is known to be additive [9], the channel
capacity for a discrete memoryless channel reduces to the single-use channel capacity

C = C1 = max
p(x):x∈X

I
(
p(x), ε

)
(6)

which involves a simpler maximization over the marginal distribution p(x).

Now let us turn to the quantum-mechanical analog of the random coding theorem. In quantum information
theory, a memoryless channel ε is described by a completely-positive trace-preserving operator map ε(·)

ε(ρ̂x) : ρ̂x ∈ H → ρ̂y|x ∈ H′ (7)

where ρ̂x is a density operator in the Hilbert space H indexed by x, and ρ̂y|x ≡ ε(ρ̂x) is the output state (in the
Hilbert space H′) when ρ̂x is the transmitted state. The HSW channel-coding theorem [3, 10, 19, 20] states that
the maximum rate of reliable communication over this channel, i.e., the channel capacity C, is given by

C = sup
n∈N+

Cn/n (8)

where
Cn = max

p(x),ρ̂x∈H⊗n
χ
(
p(x), ρ̂x, ε⊗n

)
(9)

is the n-use channel capacity, and x is an index for states that reside in the n-tensor-product Hilbert space
H⊗n. Here, χ(p(x), ρ̂x, ε⊗n) is the Holevo information between the joint state of n successive inputs to the

1Here we have departed from the standard notation, I(X; Y ), for the mutual information between two random variables X and Y ,
because it will facilitate a better analogy with the quantum case. In our notation, the first argument of the mutual information is
the quantity to be maximized over and the second argument specifies the channel transformation. The mutual information is strictly
a function of these two quantities.
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channel and the joint state of the corresponding n outputs. The Holevo information is defined as

χ(p(x), ρ̂x; ε⊗n) ≡ S

(∑
x

p(x)ε⊗n(ρ̂x)

)
−
∑
x

p(x)S
(
ε⊗n(ρ̂x)

)
(10)

where
S(ρ̂) = −tr

(
ρ̂ ln(ρ̂)

)
(11)

is the von Neumann entropy of the density operator ρ̂, which is equal to the Shannon entropy of its
eigenvalues [3].2 The maximization in Equation (9) is carried out with respect to ρ̂x, i.e., the alphabet of joint
states chosen from all possible states that can be transmitted over n uses of the channel (these states need not
be product states), and p(x), i.e., the classical probability distribution over this alphabet. The maximization
over the alphabet set must be carried out because the state of the field at the receiver is one parameter that
determines the outcome statistics, hence it affects channel capacity. The other parameter that determines the
channel capacity is the measurement performed at the receiver. However, no explicit maximization over the
measurement is needed, because the Holevo information is the rate achievable with the best possible
measurement [10].

There has not been a proof to date that Holevo information is additive for memoryless channels, thus in general
the cumbersome maximization over n, shown in Equation (8), is necessary. However, it turns out that the
Holevo information for Bosonic pure-loss and thermal-noise channels is additive [11, 12]. Thus, for these
channels we have

C = C1 = max
p(x),ρ̂x∈H

χ
(
p(x), ρ̂x, ε

)
(12)

i.e., the maximization is over the single-use Hilbert space and the associated marginal probability distribution.

B. Single-Mode Free-Space Propagation

Although the full-field paraxial free-space propagation of optical waves is governed by the Huygens-Fresnel
principle [13, 14, 15], a communication channel utilizing a single optical field mode can be modeled as a simple
beamsplitter. In this section we formally derive this equivalence.

Consider the paraxial line-of-sight geometry that is shown in Figure 1, where we have assumed that the
propagation direction is along the z-axis. A quasimonochromatic scalar field with center-frequency ω0 is
transmitted through an aperture A0 on the z = 0 plane and for a duration of T seconds. This field propagates
through free space on a length-L line-of-sight path, and is received via the receiver aperture AL on the z = L

plane. We denote the positive-frequency electric field operator that describes the transmitted field on the z = 0
plane as Ê0(ρ′, t)ejω0t, where Ê0(ρ′, t) is the baseband operator that is excited (i.e., nonvacuum) only within
domain ρ′ ∈ A0 and t ∈ [0, T ].

Throughout this article, we shall assume, for convenience, that Ê0(ρ′, t) is normalized to photon units, i.e., it
has units

√
photons/m2s. This normalization is straightforward for a quasimonochromatic optical field, in

which the frequency band that is excited is a very small fraction of the center frequency, so the energy of all

2In Equation (11), tr(·) denotes the trace of the argument.
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Figure 1. (Color online) A line-of-sight paraxial propagation geometry.

excited photons can be approximated as �ω0, where � is 2π times Planck’s constant. To obtain a photon-units
field operator, the electric field operator, with units volt/

√
m2s, is divided by

√
�ω0μ0/2ε0, where√

μ0/ε0 ≈ 377Ω is the characteristic impedance of vacuum3 and the factor of
√

2 in the denominator is to
account for the fact that half of the energy in an electromagnetic wave propagating in an isotropic medium is
carried by the magnetic field. With this normalization, and in the quasimonochromatic paraxial approximation
regime, Ê0(ρ′, t) satisfies the canonical commutator relations [2]

[Ê0(ρ′
1, t1), Ê0(ρ′

2, t2)] = 0 (13)

[Ê0(ρ′
1, t1), Ê

†
0(ρ

′
2, t2)] = δ(ρ′

1 − ρ′
2)δ(t1 − t2) . (14)

It is important to note that any valid transformation on a field operator (such as free-space diffraction) will
preserve these commutator relations.

The diffraction of optical fields in free space is governed by the Huygens-Fresnel principle, in both the classical
and quantum treatment of electromagnetism. In particular, the field operator at the z = L plane, denoted by
ÊL(ρ, t), is obtained from the transmitter-plane field operator as

ÊL(ρ, t) =
∫
A0

Ê0(ρ′, t − L/c)hL(ρ,ρ′)dρ′ (15)

where the Huygens-Fresnel Green’s function is given by

hL(ρ,ρ′) ≡ ω0

j2πcL
exp

{
j
ω0L

c
+ j

ω0

2cL
|ρ − ρ′|2

}
(16)

In order to obtain a normal-mode decomposition of the communication channel, we consider the propagation

3μ0 is the magnetic permeability of vacuum, and ε0 is its dielectric permittivity.
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kernel h(ρ,ρ′) over ρ′ ∈ A0 and ρ ∈ AL, and perform a singular-value decomposition of the kernel, yielding

hL(ρ,ρ′) =
∞∑

n=0

√
ηnφn(ρ)Φ∗

n(ρ′) (17)

where {Φn(ρ′)|n = 0, 1, . . . ;ρ′ ∈ A0} is a complete and orthonormal (CON) set of input eigenfunctions,
{φn(ρ)|n = 0, 1, . . . ;ρ ∈ AL} is the corresponding CON set of output eigenfunctions, and
{√ηn|n = 0, 1, . . . ; ηn ≥ 0} are the associated singular values, which we assume—with no loss in generality—are
listed in nonincreasing order. Let us also pick an arbitrary CON basis {ζm(t)|m = 0, 1, . . . } on t ∈ [0, T ]. Then,
the input field operator at the z = 0 plane is fully described by

Ê0(ρ′, t) =

⎧⎨
⎩
∑∞

n=0

∑∞
m=0 ân,mΦn(ρ′)ζm(t), for (ρ′, t) ∈ A0 × [0, T ]

Ê0,aux(ρ′, t), for (ρ′, t) ∈ (R2 −A0) × [0, T ]
(18)

where ân,m are annihilation operators of a quantum harmonic oscillator, satisfying the commutation relations

[ân,m, ân′,m′ ] = 0 (19)

[ân,m, â†
n′,m′ ] = δn,n′δm,m′ (20)

and Ê0,aux(ρ′, t) is an auxiliary field operator representing the field that lies outside of the transmitter aperture.
As we shall see in the following sections, if no background noise is present this auxiliary field operator is in a
vacuum state, but when background radiation is present Ê0,aux(ρ′, t) is in an excited state.

Propagating the z = 0 field operator to the z = L plane via Equation (15), and using the normal-mode
decomposition in Equation (17) over the applicable domain, we find that the field operator on the z = L plane,
denoted by ÊL(ρ, t), is

ÊL(ρ, t) =
∞∑

n=0

∞∑
m=0

ĉn,mφn(ρ)ζm(t − L/c) (21)

for (ρ, t) ∈ AL × [L/c, T + L/c], where we have

ĉn,m ≡ √
ηnân,m +

√
1 − ηnb̂n,m (22)

Here ĉn,m is the annihilation operator of the (n,m)th received field mode, in terms of the annihilation operator
of the (n,m)th transmitted field mode ân,m, and the annihilation operator from the environment, b̂n,m. The
environment modes are represented in terms of the auxiliary field operator at the transmitter plane as

b̂n,m ≡ 1√
1 − ηn

∫ T

0

∫
AL

ζ∗m(t)φ∗
n(ρ)

[∫
R2−A0

hL(ρ,ρ′)Ê0,aux(ρ′, t)dρ′
]

dρdt (23)

The receiver-aperture field operator expression given in Equation (21) corresponds to the parallel-channel model
shown in Figure 2(a). The propagation channel can be decomposed into a (countably-infinite) set of decoupled
subchannels, each of which is defined by the beamsplitter input-to-output relation given in Equation (22), and
the corresponding mode functions. Furthermore, if we assume that the mode functions are known to both the
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Figure 2. (Color online) (a) The parallel channel representation of quasimonochronimatic paraxial free-space propagation, and (b) the
beamsplitter channel model for single-mode optical communication.
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transmitter and the receiver, the communication channel is reduced to a set of beamsplitter relations. It is
worthwhile to note that although we have demonstrated the principle of the normal-mode decomposition,
obtaining the particular mode functions analytically may be nontrivial for arbitrary apertures. Nonetheless,
analytic solutions are easy to obtain with soft Gaussian-attenuation apertures [14], and they can be
obtained—in terms of prolate spherioidal functions—for hard circular apertures [16].

At this juncture, we can state in full rigor that a single-mode free-space communication channel is one in which
the information transfer utilizes only one of the infinitely-many (n,m) modes at our disposal. The
communication channel is therefore reduced to a single beamsplitter relation as shown in Figure 2(b), where we
have suppressed the subscripts. Note that not all modes yield equal channel capacity, as the power coupling, ηn,
is not the same for all of the available spatiotemporal modes of communication. Furthermore, although we limit
the scope of this article to single-mode communication, the information capacity of this channel is maximized
when the available average photon flux is optimally distributed over all available spatiotemporal modes [14].

In this article, we shall consider two scenarios: a pure-loss channel in which the environment, b̂, is in the
vacuum state, and a thermal-noise channel, in which the environment is in a thermal state.

II. The Pure-Loss Channel

As we have reviewed in Section I.B, a single-mode free-space optical communication channel can be modeled as
a beamsplitter relation, which is depicted in Figure 2(b). Here, â denotes the input modal field operator—i.e.,
the annihilation operator—associated with the spatiotemporal mode that is utilized by the transmitter, b̂ is the
modal field operator for the environmental contribution (vacuum fluctuations or unwanted background
radiation), and ĉ is the output modal field operator at the receiver. The transmissivity of the beamsplitter, η,
models the power coupling between the transmitted mode and the receiver.

In this section we shall take the environment mode, b̂, to be in its vacuum state, and we impose a mean photon
number constraint 〈â†â〉 ≤ NS on the transmitter.4

Ultimate capacity : The ultimate capacity of this channel, with no structural constraints imposed on the
transmitter and receiver—other than the mean photon number constraint—is given by [11]

Cult = g(ηNS) nats/channel use (24)

where g(x) = (1 + x)ln(1 + x) − xlnx. It has been shown that this capacity may be achieved by single-use
coherent state encoding with an isotropic Gaussian input probability density. In other words, messages are
mapped to complex-valued codewords, wherein each entry in a codeword represents the complex amplitude of
the transmitted laser pulse in the corresponding channel use. Analogous to the random-coding argument in
Shannon’s channel capacity theorem [9], the “optical codebook” is conceptually generated by choosing

4We denote ensemble averages throughout this article with angled-brackets. Thus, 〈X̂〉 is the expected value of a measurement of

the operator X̂.
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independent and identically distributed complex-valued entries, α, from an isotropic Gaussian distribution

p(α) =
1

πNS
e−|α|2/NS (25)

Although the encoding strategy described above applies to all loss values 0 < η ≤ 1, the η = 1 case (i.e., the
lossless channel) has historically received more attention [17, 6]. To that end, it is worth pointing out that when
η = 1, an alternative encoding strategy is single-use number-state (i.e., Fock state) encoding with a
Bose-Einstein prior. That is, the codewords are now chosen from an alphabet of nonnegative integers, wherein
each entry indicates the number of photons that will be transmitted in the corresponding channel use. In
quantum mechanics, the optical state that contains a deterministic number of photons is called a number state
or a Fock state, which is nonclassical (the photodetection statistics of these states cannot be explained with shot
noise theory). As in the coherent state case described above, a capacity-achieving codebook can be generated
(with high probability) by choosing independent and identically distributed entries from the Bose-Einstein
(geometric) distribution

p(n) =
Nn

S

(1 + NS)n+1
, n = 0, 1, 2, . . . (26)

Thus far, we have only considered encoding strategies. Unfortunately, much less can be said about the optimal
measurement (i.e., receiver), because the quantum analog of the channel coding theorem implicitly maximizes
over all possible measurements. It is known mathematically that a square-root measurement can be used for
decoding [3, 18]; however, the level of abstraction implied by this measurement is similar to that of
maximum-likelihood or jointly-typical decoding in Shannon’s channel coding theorem. Consequently, to this
date, a physical realization of the capacity-achieving receiver for the pure-loss channel has not been determined.
However, it is expected that the optimal receiver for coherent-state encoding performs measurements over
multiple channel uses [19, 20].

It should be noted that capacity-achieving state alphabets may not be unique, i.e., a different set of transmitter
states (in combination with a different set of prior probabilities and a different measurement at the receiver),
could achieve capacity as well. These different coding possibilities may have different error exponents, and may
have different decoding complexities. For example, in the η = 1 (lossless) case, number-state encoding, with a
simple symbol-by-symbol photon-counting measurement (realized by an ideal photodetector) achieves the
ultimate channel capacity. Furthermore, number-state encoding combined with photon-counting is error free for
finite-length codewords, whereas coherent-state encoding is only error free in the asymptotic limit of infinite
length codewords. Nonetheless, number-state encoding and photon counting no longer achieve capacity when
η < 1, whereas coherent-state encoding remains optimal.

We shall consider the capacity of structured transmitter and receivers next. However, before we move on, it is
important to emphasize that the ultimate-capacity-achieving transmitter is classical. It requires a phase and
amplitude stable laser; however, no nonclassical states are required. The receiver, on the other hand, may have
high complexity because multiple-symbol measurements (over multiple channel uses) are likely to be
necessary [21, 22].

Coherent-state encoding and homodyne detection: Homodyne detection is a coherent detection technique in
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which a strong local oscillator and a weak incoming field are mixed on a beamsplitter prior to photodetection
[23, 24, 25]. In homodyne detection, the center frequency of the local oscillator and that of the signal field are
identical, which facilitates the measurement of a single quadrature of the incident field. Quantum mechanically,
homodyne detection corresponds to a measurement of one quadrature of the annihilation operator ĉ, and the
quadrature that is measured can be altered by adjusting the phase of the local oscillator, θLO [1]. If the
transmitted field operator, â, is in a coherent state |α〉, with α ∈ C, then the measurement outcome is a
real-valued Gaussian random variable with mean

√
η�{αe−jθLO}, and variance 1/4. We therefore have an

additive white Gaussian noise channel, with the capacity [9]

Ccoh-hom =
1
2
ln(1 + 4ηNS) nats/channel use (27)

This capacity is achieved by choosing α = XejθLO , where X is a real-valued Gaussian random variable with zero
mean, and variance NS .

Coherent-state encoding and heterodyne detection: Heterodyne detection is a coherent detection technique in
which the local oscillator is frequency-shifted from the incoming field by an electronically detectable amount.
This facilitates the measurement of both the real and imaginary quadratures of the incident field, at the expense
of adding image-band noise [23, 24, 25]. Quantum mechanically, heterodyne detection yields complex-valued
measurement outcomes that correspond to the measurement of the annihilation operator ĉ.5 If â is in a coherent
state |α〉, with α ∈ C, then the measurement outcome is a complex-valued Gaussian random variable with mean√

ηα, and variance 1. We therefore have a complex-valued, additive, white and isotropic Gaussian noise channel,
with the capacity [9]

Ccoh-het = ln(1 + ηNS) nats/channel use (28)

This capacity is achieved by choosing α from the same isotropic Gaussian distribution given in Equation (25).
To that end, it is a good example of the degradation in performance when optimal encoding (modulation), but
suboptimal decoding (measurement) is used.

On-off keying (with coherent states) and direct detection: Here, we consider coherent-state encoding and a
photon-counting measurement N̂ = ĉ†ĉ. If â is in a coherent state |α〉, with α ∈ C, then the measurement
outcome is a Poisson distributed random variable with mean value η|α|2. Unfortunately (and surprisingly), the
capacity of the discrete-memoryless Poisson channel is still an open problem [28]. So we shall restrict ourselves
to a particular modulation, namely on-off keying (OOK). It is known that when ηNS � 1, OOK approaches the
ultimate channel capacity [Equation (24)], and therefore becomes near-optimal [29].

The only source of error in coherent-state OOK and photon counting over a pure-loss channel is when a pulse is
transmitted, but no photon is registered, i.e., it is a Z-channel with probability of error ε(p) = e−ηNS/p, where p

is the probability of transmitting a pulse. Therefore the capacity is

COOK-pc = max
p∈[0,1]

h2

(
p
(
1 − ε(p)

))− p h2

(
ε(p)

)
nats/channel use (29)

where h2(ε) = −εlnε − (1 − ε)ln(1 − ε) is the binary entropy function. The maximization over p requires solving

5Because ĉ is not a Hermitian operator, this is a probability operator-valued measure (POVM) with differential eigenkets d2α|α〉〈α|/π
[26, 27].
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transcendental equations, so we resort to numerical maximization.

On-off keying (with coherent states) and optimal receiver : Let us restrict our modulation to OOK with coherent
states, but allow an arbitrary receiver. The Holevo information in Equation (10) represents the maximum rate
of reliable communication optimized over all receivers [3]. Therefore, the channel capacity for coherent-state
OOK is given by

COOK-ult = max
p∈[0,1]

h2

(
1
2

[
1 +

√
1 − 4p(1 − p)(1 − e−ηNS/p)

])
nats/channel use (30)

where p represents the probability of the ‘on’ state, and h2(·) is the binary entropy function defined earlier.
Carrying out the maximization with respect to p requires solving for the root of the transcendental equation

p(1 − 2p) − (p(1 − 2p) + (1 − p)ηNS

)
e−NS/p = 0 (31)

which is carried out numerically.

Binary Phase-Shift Keying (with coherent states) and the Dolinar receiver : Let us now consider a phase
modulation, where a coherent state with amplitude

√
NS is transmitted with probability p, and a coherent state

with amplitude −√
NS is transmitted with probability 1 − p. We will consider a symbol-by-symbol

measurement that minimizes the probability of error in distinguishing between these two states, namely the
Dolinar receiver [30]. This yields a binary symmetric channel with the crossover probability, ε, given by

ε = (1 −
√

1 − e−4ηNS )/2 (32)

Thus, the channel capacity for BPSK modulation and a Dolinar receiver is

CBPSK-Dol = ln2 − h2 (ε) nats/channel use (33)

This capacity is achieved with p = 1/2.

Binary Phase-Shift Keying (with coherent states) and optimal receiver : Let us consider the same phase
modulation as before: a coherent state with amplitude

√
NS is transmitted with probability p, and a coherent

state with amplitude −√
NS is transmitted with probability 1 − p. Maximizing the Holevo information with

respect to p yields [29]

CBPSK-ult = h2

(
1
2

[
1 + e−2ηNS

])
nats/channel use (34)

This capacity is achieved with p = 1/2.

In Figure 3, all of the aforementioned capacities are plotted as a function of the mean signal photon number at
the receiver, ηNS . Figure 4 plots the same information as a function of the photon cost (defined as the mean
photon number divided by the channel capacity) and the symbol cost (defined as the multiplicative inverse of
the channel capacity) [31]. In this latter figure, the desired regime of operation is the bottom left corner, which
corresponds to photon-efficient and bandwidth-efficient communication.

The ultimate capacity, as expected, outstrips all of the capacity curves obtained with structured transmitters or
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Figure 3. (Color online) Ultimate channel capacity of a pure-loss optical communication channel and the capacities achieved by
structured transmitter and receivers.
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Figure 4. (Color online) The ultimate capacity of a pure-loss channel and the capacities of structured transmitter and receivers
plotted in terms of symbol cost and photon-number cost.
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receivers. All binary modulations are limited to at most ln2 nats/channel use, therefore they are useful in
photon-starved links (i.e, links with ηNS � 1). In this regime, BPSK combined with the optimal receiver
performs very close to the ultimate capacity. OOK, in combination with the optimal receiver, also closely tracks
the ultimate capacity, although this capacity is strictly lower than that of BPSK with its optimal receiver. A
noteworthy difference between the two modulations, however, is the peak-to-average photon-flux ratio. For
BPSK this ratio is unity, whereas for OOK it is 1/p, i.e., the multiplicative inverse of the duty cycle. The
optimal duty cycles for OOK (with the optimal receiver and with photon-counting) are shown in Figure 5, as a
function of ηNS . When ηNS < 1, the peak-to-average photon flux is much greater than unity. Consequently, as
ηNS decreases, a practical OOK optical transmitter would become limited by its peak photon flux, whereas a
BPSK transmitter does not suffer from this limitation.

OOK in combination with photon-counting is often considered a near-optimal configuration. Indeed, Figure 3
shows that as ηNS decreases, the capacity of this configuration asymptotically approaches both the capacity of
OOK with the optimal receiver, and the ultimate capacity. Figure 4 shows a similar convergence in symbol cost
(the number of channel uses per information bit) as the photon-number cost (the mean number of received
photons per information bit) goes to zero. However, in either plot the convergence occurs very slowly. This slow
rate of convergence is apparent in Figure 6, in which we have plotted the ratio of each capacity to the ultimate
capacity. For example, at ηNS = 0.1, the ratio of the OOK plus photon-counting capacity to the ultimate
capacity is 1/2, and at ηNS = 0.001, this ratio is approximately 2/3. Another difference between OOK with
photon-counting and OOK with the optimal receiver is their capacity-achieving peak-to-average photon fluxes.
In particular, the peak-to-average photon-flux ratio required by the optimal receiver is notably smaller than
that required by photon counting, when ηNs � 1. For example, from Figure 5 we see that at ηNS = 0.01, the
peak-to-average photon flux with the former receiver is approximately four times smaller than that with the
photon-counting receiver. However, it is worthwhile to reiterate that both configurations yield high
peak-to-average photon-flux ratios in comparison to phase modulations, such as BPSK.

The Dolinar receiver is known to be the symbol-by-symbol optimal (i.e., minimum probability of symbol error
achieving) receiver for BPSK [30], therefore, one might be inclined to expect that its capacity is near-optimal.
However, this is not so, as its performance is significantly worse than BPSK with the optimal receiver. Figure 4
shows that BPSK plus the Dolinar receiver has a minimum symbol cost due to its binary alphabet, and a
minimum photon cost due to single-symbol errors that dominate the performance in the ηNS � 1 regime.

The capacities of the two coherent receivers, i.e., homodyne and heterodyne detection, intersect when the
channel transitions from the photon-number-limited regime into the bandwidth limited regime. In particular, at
low photon numbers communication is limited by the quantum noise of the measurement (or the local-oscillator
shot noise in the semiclassical interpretation), so homodyne detection outperforms heterodyne detection due to
its higher signal-to-noise ratio. On the other hand, at high photon numbers, when the channel is bandwidth
constrained, heterodyne detection outperforms homodyne detection, because it measures more degrees of
freedom of the complex optical field, i.e., heterodyne detection measures both quadratures of the incident field,
whereas homodyne is limited to a single quadrature.6 We show in Section IV that at high signal mean photon

6The homodyne versus heterodyne detection performance tradeoff can be thought of as follows: Homodyne detection yields one
real-valued additive Gaussian noise channel. Heterodyne detection, on the other hand, yields two real-valued additive Gaussian noise
channels, but each has half the SNR of the former. When photon-number constrained, it is better to use the single channel with the
higher SNR, whereas when bandwidth constrained, it is better to use the two channels offered by heterodyne detection.
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Figure 5. (Color online) The optimal duty cycle for OOK modulation.
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Figure 6. (Color online) Ratio of channel capacities with structured transmitter and receivers, to the ultimate capacity.
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numbers heterodyne detection approaches the ultimate channel capacity, which can be visually verified from
Figure 6.

III. The Thermal-Noise Channel

We now introduce background radiation by letting the environment mode b̂ be in a thermal state (zero-mean
Gaussian state) with mean photon number 〈b̂†b̂〉 = NB . We continue to impose a mean photon number
constraint 〈â†â〉 ≤ NS on the transmitter.

The mean photon number of background radiation that occupies each spatiotemporal mode at optical
frequencies is given by [32]

NB =
106λ5

0S

2c2h
(35)

where S is the background spectral radiance specified in W/m2Srμm, λ0 is the central wavelength, c is the speed
of light in vacuum, and h is Planck’s constant. In the near-infrared (IR) regime, which is of most interest to
current optical communications, NB is dominated by scattered sunlight, and assumes values that are very small
fractions of a photon. For example, at λ0 = 1.55μm, S can range from 10 to 1000 (in W/m2Srμm) [32], which
yields NB values that range from 10−8 to 10−5 photons per mode [32]. As evidenced by the capacity formulas
that will be presented in this section, the impact of such small numbers of noise photons is negligible, because
most (if not all) optical communication links are designed to operate with significantly higher mean signal
photon number. Consequently, there is little loss in accuracy in using the pure-loss channel capacity results
from the previous section, in order to determine the channel capacity of free-space optical communication links.

However, not all communication links operate within the near-IR band, or operate in noise conditions that are
dominated by scattered sunlight. For example, it has been shown that atmospheric absorption and scattering is
low in the 8μm-to-15 μm window [32], which makes it desirable for communication. The noise in this band is
limited by blackbody radiation, which ranges from 10−2 to 1 photon per mode at room temperature, as shown
in Figure 7. In addition, the Sun radiates approximately 0.25 photons per mode in the near-IR range, which can
dominate the noise seen by an optical communication receiver that is pointing close to the Sun (this is a routine
consideration in designing deep-space optical communications). If the center wavelength of interest is moved out
to the 10μm to 1000μm range, which corresponds to terahertz frequencies (mid-IR and far-IR range of the
electromagnetic spectrum) [33, 34], blackbody radiation at room temperature varies between 1 to 10 photons
per mode. In this section, in order to cover communication performance results that span a broad range of
background conditions, we shall show plots for NB = 1 and NB = 10, with the understanding that for NB � 1,
the pure-loss channel capacity results are good approximations to performance.

Ultimate capacity : The ultimate capacity of the thermal-noise channel, with no structural constraints imposed
on the transmitter and receiver, is given by [12, 14]

C
(th)
ult = g

(
ηNS + (1 − η)NB

)− g
(
(1 − η)NB

)
nats/channel use (36)

where g(x) was defined in the previous section. This is in fact the maximum rate achievable with single-use
coherent state encoding where the symbols are drawn from an isotropic Gaussian probability distribution. The
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Figure 7. (Color online) Blackbody radiation per mode at room temperature (283K) and that from the Sun (at 5900K).

converse of this statement, i.e., that communicating at a rate higher than C
(th)
ult yields a probability of error

bounded away from zero, was initially posed as a conjecture, the truth of which hinged on proving the
“minimum output entropy conjecture” for a beamsplitter [35]. This conjecture was later shown to be a special
case of the “Entropy Photon-Number inequality conjecture” [36]. However, recently all of these conjectures have
been proven true [37, 38]. Thus, C

(th)
ult is the capacity of the thermal-noise channel. As with the pure loss

channel, a physical realization of the capacity-achieving receiver for the thermal-noise channel is not yet
determined. Nonetheless, the ultimate capacity is achievable by transmitting only classical states of light.

Coherent-state encoding and homodyne detection: When â is in a coherent state |α〉, with α ∈ C, a homodyne
measurement yields a real-valued Gaussian random variable with mean

√
η�{αe−jθLO}, and variance

(1 − η)NB/2 + 1/4. Hence, the capacity is given by [36]

C
(th)
coh-hom =

1
2
ln
(

1 +
4ηNS

2(1 − η)NB + 1

)
nats/channel use (37)

This capacity is, once again, achieved with α = XejθLO , where X is a real-valued Gaussian random variable
with mean zero and variance NS , and θLO is the local oscillator phase.

Coherent-state encoding and heterodyne detection: When â is in a coherent state |α〉, with α ∈ C, a heterodyne
measurement yields a complex-valued Gaussian random variable with mean

√
ηα, and variance (1 − η)NB + 1.

We therefore have a complex-valued additive white Gaussian noise channel, with the capacity [36]

C
(th)
coh-het = ln

(
1 +

ηNS

(1 − η)NB + 1

)
nats/channel use (38)

This capacity is achieved by choosing α, once again, from an isotropic complex-valued Gaussian distribution
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with zero mean and variance NS .

On-off keying (with coherent states) and photon-counting : Let us return to coherent-state encoding and a
photon-counting receiver. In particular, the transmitter chooses the coherent state |√NS/p〉 with probability p,
and the vacuum state |0〉 with probability 1− p. When a pulse is transmitted, the received optical field operator
ĉ is in a displaced thermal state with mean

√
ηNS/p and conditional variance (1 − η)NB . When no pulse is

transmitted, ĉ is in a thermal state with zero mean and conditional variance (1 − η)NB .

The photon-counting measurement on a field mode that is in a displaced thermal state with mean α ∈ C and
variance NB yields an outcome with the probability mass function [2, 24, 39],

p(n) =
Nn

B

(1 + NB)n+1
Ln

( −|α|2
NB(1 + NB)

)
e−|α|2/(1+NB) (39)

for n = 0, 1, 2, . . . , where Ln(x) is a Laguerre polynomial of order n. Note that when α = 0, the distribution
simplifies to the Bose-Einstein distribution, which is the photon-counting distribution due to a thermal state. In
addition, using the limit limx→0 xnLn(−a/x) = an/n!, we observe that in the NB → 0 limit Equation (39)
converges to a Poisson distribution, which is the photon-counting distribution due to a coherent-state field mode.

The channel capacity for coherent-state OOK is a one-dimensional optimization of the mutual information over
the pulse transmission probability p ∈ (0, 1]. Nonetheless, the mutual information for a given p is not known in
closed form. Thus the maximization over p must be carried out numerically.

In Figure 8, we have plotted the capacities considered thus far as a function of the mean signal photon number
at the receiver, ηNS , for mean received noise photon numbers (1 − η)NB = 1 and (1 − η)NB = 10. Figure 9 is a
plot of the symbol cost (the multiplicative inverse of the capacity) versus the photon-number cost (ηNS divided
by the capacity) for each of the capacities considered in this section. We observe from these two figures that
heterodyne and homodyne detection both outperform OOK with photon counting. Furthermore, as we will
show in the next section, when ηNS � (1 − η)NB and (1 − η)NB 
 1, the homodyne and heterodyne detection
channel capacities approach ultimate capacity of the channel. In this regime homodyne detection performs
marginally better than heterodyne detection due to a marginal advantage in the signal SNR. In the opposite
end of the spectrum, when ηNS 
 (1 − η)NB , heterodyne detection is near optimal. In this high signal regime,
homodyne detection suffers some loss from measuring one quadrature of the received field, whereas heterodyne
detection affords higher throughput by facilitating information transmission over both quadratures of the field.
The asymptotic performance of the coherent detection schemes mentioned above is captured in the ratio of their
channel capacities to the ultimate capacity, which is plotted in Figure 10. When (1 − η)NB = 10, heterodyne
detection yields a capacity greater than 0.95C

(th)
ult for all ηNS .

The poor performance of OOK plus photon counting relative to that of coherent (homodyne or heterodyne)
detection is clear in Figures 9 and 10. An additional challenge in utilizing OOK plus photon counting is the
very high peak-to-average photon-flux ratio required by this modulation scheme. In particular, Figure 11 plots
the optimal duty cycle for OOK, which is the multiplicative inverse of the peak-to-average photon flux. We
observe that at ηNS = 0.1, the capacity-achieving peak-to-average photon flux ratio is approximately 100 for
(1 − η)NB = 1, and 1000 for (1 − η)NB = 10.
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Figure 8. (Color online) The channel capacity of a thermal-noise optical communication channel and the capacities achieved by
coherent detection.
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Figure 9. (Color online) The ultimate capacity of a thermal-noise channel and the capacities of structured transmitter and receivers
are plotted in terms of symbol cost and photon-number cost.
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Figure 10. (Color online) Ratio of channel capacities with coherent detection receivers, to the ultimate capacity.
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Figure 11. (Color online) Numerically-evaluated optimal duty cycle for OOK modulation and photon-counting photodetection.
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Before concluding, it is worth reiterating here what we have established at the beginning of this section.
Free-space optical links that operate in the near-IR and do not point close to the Sun will have a single-mode
communication performance almost as good as the pure-loss channel. A mean background photon number of 1
per mode is possible if the sun is within the field of view, or if the communication frequency is on the order of
tens of micrometers (mid-IR range). A mean background photon number of 10 is very much above the nominal
values seen in near-IR optical frequencies, and is more applicable to the far-IR and the terahertz frequency
range.

IV. Asymptotic Expressions for the Ultimate Capacity

Here we shall give expressions for the asymptotic behavior of the ultimate capacity. Recall from Equation (36)
that the ultimate capacity is given by

C
(th)
ult = g(ns + nb) − g(nb) (40)

where, g(x) ≡ (1 + x)ln(1 + x) − xln(x), and, for convenience of notation, we have used ns ≡ ηNS and
nb ≡ (1 − η)NB . When nb > 0 and ns � nb, we can write7

C
(th)
ult = nsln(1 + 1/nb) + o(ns/nb) (41)

Therefore, using the expressions from Equation (37) and Equation (38), we find that

C
(th)
coh-hom

C
(th)
ult

=
1

(nb + 1/2) ln(1 + 1/nb)
(42)

and

C
(th)
coh-hom

C
(th)
ult

=
1

(nb + 1) ln(1 + 1/nb)
(43)

for ns � nb. If, in addition, nb 
 1 holds, we have ln(1 + 1/nb) ≈ 1/nb, so that the ratios become

C
(th)
coh-hom

C
(th)
ult

= 1 − 1
2nb

(44)

and

C
(th)
coh-het

C
(th)
ult

= 1 − 1
nb

(45)

The approximation in Equation (41) is valid for nonzero nb. When nb = 0 and ns � 1, the ultimate capacity

7We use the standard notation o(x) to denote a function that approaches zero faster than x, as x approaches zero, i.e., limx→0 o(x)/x =
0.
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expression from Equation (24) has the asymptotic expansion

Cult = ns[1 − ln(ns)] + o(ns) ≈ ns (46)

Then, using Equation (27) and Equation (28) we obtain,

Ccoh-hom

Cult
=

2
1 − ln(ns)

(47)

and

Ccoh-het

Cult
=

1
1 − ln(ns)

(48)

for ns � 1, both of which converge to zero as ns goes to zero. Thus both homodyne and heterodyne detection
are suboptimal in photon-starved and noiseless communication links.

In the opposite end of the spectrum, when ns 
 nb, we can simplify the capacity to

C
(th)
ult = g(ns) − g(nb) + nbln(1 + 1/ns) + o(nb/ns) (49)

When, in addition, ns 
 1 is satisfied, this expression further simplifies to

C
(th)
ult ≈ ln

(
ns

nb + 1

)
+ 1 − nbln(1 + 1/nb) (50)

We recognize the first term on the right-hand side of Equation (50) as the heterodyne-detection channel
capacity in the ns 
 max{1, nb} limit. The latter two terms in Equation (50) are independent of the mean
received signal photon number ns, and therefore the ratio of the heterodyne detection capacity and the ultimate
capacity approaches unity with increasing ns. However, in absolute terms, there is a gap between the two
capacity expressions that is independent of ns.8 Although we have derived Equation (50) for nb > 0, it is valid
in the noiseless case as well. Taking the limit of Equation (50) as nb approaches 0 yields Cult ≈ ln (ns) + 1,
which shows that the ratio of heterodyne-detection capacity and the ultimate capacity approaches 1 when
ns 
 1, but an absolute difference of 1 nat/channel use persists as ns diverges.

In Figure 12 we have plotted the ultimate capacity expression from Equation (36), along with the
approximations Equation (41), Equation (49) and Equation (50), for nb = 1 and nb = 10. We observe that the
approximations are in excellent agreement with the exact capacity expression in their regimes of validity.

V. Photon Counting with Multiple Modes

A photon-counting photodetector simply measures the incident photon flux. Hence, using the decomposition
given in Section I.B, we observe that all spatiotemporal modes of the impinging field that have nonzero power
coupling to the photosensitive surface of the photodetector contribute to the measurement outcome.

8Note that limx→0 ln(1 + x)/x = 1 and the function decreases with increasing x. Hence, 1 − nbln(1 + 1/nb) > 0 for all nb > 0.
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Figure 12. (Color online) Asymptotic approximations to the ultimate capacity for the thermal-noise channel (nb > 0). The solid
(blue) curve shows the exact expression from Equation (36), the dash-dotted (green) curve is the ns � nb approximation from

Equation (41), the dashed (red) curve is the ns � nb asymptote from Equation (49), and the dotted (cyan) curve is the ns � nb and
ns � 1 approximation from Equation (50).
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Consequently, it is desirable to have narrow spectral and spatial optical filters that limit the incident photon
flux to that of the modulated signal mode, plus the background photon-flux that occupies this mode.
Nevertheless, designing narrow and efficient spatial and spectral filters is a technological challenge, and often
there are multiple spatiotemporal modes that have appreciable coupling to the detector’s photosensitive surface.

In this section we demonstrate the degradation in single-mode communication performance due to multimode
background noise coupling into photon-counting receivers. In particular, let us concentrate on binary on-off
keying as our modulation, and let us suppose that the number of modes coupling into the photodetector is K,
such that the measurement is given by

N̂ =
K−1∑
k=0

ĉ†k ĉk (51)

where ĉ0 denotes the mode with the signal modulation plus thermal noise, and ĉk for k = 1, . . . ,K − 1, have no
signal (vacuum-state input), but contribute thermal noise.

If {ĉk} are in a thermal product state with equal variances denoted by N , and if ĉ0 has mean value α ∈ C, the
photon-counting statistics are given by [2, 24]

p(n;K) =
Nn

(1 + N)n+K
L(K−1)

n

( −|α|2
N(1 + N)

)
e−|α|2/(1+N) (52)

for n = 0, 1, 2, . . . , where L
(K−1)
n (x) is the (K − 1)th associated Laguerre polynomial of order n [40].

As in the single-mode case, the channel capacity is a one-dimensional optimization of the mutual information
over the pulse transmission probability p ∈ (0, 1], but, because this mutual information is not in closed form,
numerical techniques are used to find the maximum. Figure 13 is a plot of the symbol cost versus the
photon-number cost for (1 − η)NB = 0.01 mean received background photons per mode. As expected, the
photon-number efficiency degrades as the number of modes that couple into the photodetector increases.

The K 
 1 limit is often of practical interest because free-space optical communication systems often operate in
this regime. Suppose the total measured noise variance is N ′ < ∞, so that each of the K modes has noise
variance N ≡ N ′/K. Then, as K → ∞ with N ′ fixed, the probability distribution given in Equation (52)
approaches a Poisson distribution with mean N ′ + |α|2, i.e., [2, 24, 39, 41]

lim
K→∞

p(n;K) = (N ′ + |α|2)ne−(N ′+|α|2)/n! (53)

for n = 0, 1, . . . . Thus, as K becomes large, the distribution of the photodetected noise is well approximated by
a Poisson distribution with the same mean. Figure 13 shows an example for K = 100 and N ′ = 1, which
confirms that the channel capacity using the Poisson distribution in Equation (53) and the exact capacity
obtained from the Equation (52) distribution with K = 100 and N = 0.01, are nearly identical.

VI. Conclusions

We have provided a brief review of the known results for channel capacities achieved with various modulation
(transmitter) and detection (receiver) constraints, as well as the ultimate quantum limits on reliable
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Figure 13. (Color online) Symbol cost versus photon-number cost for OOK plus photon-counting when multiple noise modes, each
with mean noise photon number 0.01 photons/mode, couple into the photodetection measurement. The curve labeled ∞ denotes

Poisson noise statistics with total mean photon number N ′ = 1, which shows that aggregate photon-number statistics of multimode
noise with large K (e.g., K = 100 modes with 0.01 photons/mode) is well-modeled as a Poisson random variable having the same

mean total photon number.

communication of classical information. The ultimate capacity is achievable with classical-state light, namely
coherent states, but the corresponding optimal receivers are yet to be determined. Plots indicate that there are
several decibels of potential gain (per mode) from pursuing the optimal receivers that achieve the ultimate
capacity when the background radiation (per mode) is negligible.

An important outcome of the results presented in Section II is that binary phase-shift keying (BPSK), in
combination with the optimal measurement (as yet to be determined), is near-optimal in photon-starved
channels. Furthermore, its channel capacity exceeds that of on-off keying (OOK), in combination with either
photon-counting photodetectors or even the optimal measurement. The current technology development for
laser transmitters with high peak-to-average power ratios is geared towards approaching the capacity with
pulsed (intensity) modulations (such as on-off keying or pulse position modulation) in combination with
high-bandwidth photon-counting detectors. The results given in Section II provide a framework for comparing
different modulation and receiver configurations, and suggest that in photon-starved links binary antipodal
signaling (binary phase-shift keying) using phase-coherent lasers, in combination with an optimal receiver to
decode the information encoded with such modulation, performs very close to the ultimate capacity of the
channel dictated by quantum mechanics. On-off keying with the optimal receiver performs strictly worse than
the former configuration, and on-off keying with photon counting performs even worse than the former two.
Therefore, future technology development of phase-stable (continuous-wave) lasers, and research into
near-optimal receivers to detect phase-modulated waveforms can enable optical communication at higher rates,
or at lower (power and bandwidth) cost than the current state of the art. Furthermore, phase modulation offers
an alternative to the high peak-to-average power ratio required by on-off keying, and therefore it may notably

26



expand the trade space of viable laser transmitter technologies.

The results for thermal-state channels are, to date, limited. The ultimate capacity had been, until recently, a
conjecture subject to the proof of either the minimum output entropy conjecture, or the entropy photon-number
inequality conjecture. Nevertheless, very recently both of these conjectures have been proven true, and the
channel capacity conjecture has been resolved. As we have reviewed in this article, the capacity-achieving
transmitter states are classical coherent states, but the optimal measurement is not yet known. Our comparison
of several structured transmitter and receivers has shown that the optimal (isotropic Gaussian) modulation plus
heterodyne or homodyne detection outperforms OOK plus photon-counting, except possibly in the limit of very
small mean signal photon numbers. We have also shown that heterodyne detection is near-optimal at high mean
signal photon numbers. Homodyne detection becomes near-optimal only in the low signal and high background
case.

Heterodyne and homodyne detection are inherently single spatial mode, because the measured field is
mode-matched to the local oscillator’s spatial mode, and can be made single temporal mode by matched
filtering the photocurrent. On the other hand, in photon-counting receivers, all modes of the incident field that
have nonzero coupling to the photosensitive surface of the photodetector contribute to the measurement
outcome. Whereas auxiliary unexcited (vacuum-state) modes are of no consequence, in the presence of thermal
noise, extra noise modes can significantly impair performance. Therefore, it is relevant that the spatiotemporal
auxiliary mode coupling is minimized in photon-counting receivers. Temporal modes can be eliminated via
spectral filtering prior to photodetection, and spatial modes can be limited by reducing the detector’s
field-of-view. The number of noise modes that affect a photodetector is approximately given by the product of
the photodetector integration time and the optical bandwidth. Most photon-counting receivers operate with
many auxiliary noise modes, each contributing some background radiation. As we have shown in this article,
this can have a significant impact on the channel capacity.

Several questions for the thermal-noise communication channel remain open. For example, it is of practical
interest to determine if BPSK in combination with the optimal measurement still approaches the ultimate
capacity of the thermal-noise channel. Similarly, the performance of OOK with the optimal measurement,
relative to the ultimate capacity and the capacity achieved with photon counting is of interest. These
comparisons will quantify the gains from developing optimal receivers, and will improve our understanding of
good modulation formats in the presence of (background) noise.

We should take a moment to acknowledge that the analysis in this article does not account for atmospheric
turbulence, which cannot be ignored in terrestrial, space-to-Earth or Earth-to-space communication links.
Turbulence is caused by the nonuniform temperature distribution of the atmosphere, which results in a
nonuniform refractive index profile [42]. The impact of turbulence in a communication system is fading
(sometimes also referred to as scintillation), due to the constructive and destructive interference of different
plane-wave components of the field impinging on the receiver aperture, and, beam spread and angular spread,
due to the distortion in the phase front. These impairments do not preclude reliable communication; however,
the degree to which they impact different communication technologies vary widely. Therefore, an
analysis—paralleling that presented in this article for free-space communication—should be carried out for
channel capacity in the presence of turbulence.
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Finally, it is worthwhile to emphasize that these results are for single-mode communication. Multiple temporal
modes may be utilized in communication links that have a time-bandwidth product greater than unity. Multiple
spatial modes may be utilized in communication link geometries that are not deep in the far-field [14]. As
implied by the mode decomposition of the free-space propagation kernel, multiple (spatial and/or temporal)
modes could be conceivably utilized to convey information over effective parallel channels, each with a different
coupling coefficient η. The optimal photon number allocation in each of these parallel channels, the gains
associated with multimode communication, and the complexity of the transmitters and receivers, are relevant
questions that should be answered in order to delineate the full potential of optical communication.
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